Nucleic Acid Related Compounds. 86. Nucleophilic Functionalization of Adenine, Adenosine, Tubercidin, and Formycin Derivatives via Elaboration of the Heterocyclic Amino Group into a Readily Displaced 1,2,4-Triazol-4-yl Substituent ${ }^{1}$

Robert W. Miles, Vicente Samano, ${ }^{\dagger}$ and Morris J. Robins*
Contribution from the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
Received February 1, 1995 ${ }^{\otimes}$

Abstract

Treatment of 9-methyladenine and hydroxyl-protected derivatives of adenosine and 2^{\prime}-deoxyadenosine with 1,2 -bis[(dimethylamino)methylene]hydrazine and/or its dihydrochloride at elevated temperatures in appropriate solvents resulted in elaboration of the 6 -amino group into a 6 -(1,2,4-triazol-4-yl) substituent in excellent yields. Analogous functionalization of the amino groups of tubercidin [4-amino-7-(β-D-ribofuranosyl)pyrrolo[2,3- d]pyrimidine\} and formycin \{7-amino-3-(β-D-ribofuranosyl)pyrazolo[$4,3-d]$ pyrimidine $\}$ gave the respective 4 - and 7 -($1,2,4$-triazol-4-yl) derivatives. Nucleophilic replacement of the triazole moiety gave the respective $6-, 4-$, and 7 -substituted purine, pyrrolo[$2,3-d]$ pyrimidine, and pyrazolo[4,3- d]pyrimidine products. This first general method for "direct" nucleophilic replacement of an amino group on these nitrogen heterocycles also provides a new class of compounds for potential postsynthetic modifications after incorporation into oligonucleotides.

Introduction

The synthesis of nucleoside and nucleotide analogues with unnatural bases is important due to the biological and medicinal significance of these compounds. Two frequently used methods for their synthesis are (i) base synthesis and base-sugar coupling and (ii) base modification of intact nucleosides. ${ }^{2}$ Of the two, coupling offers greater flexibility in base structures. However, these reactions often suffer from poor yields and lack of isomeric selectivity. Nucleoside modifications minimize reaction steps and avoid isomeric separations by employing readily available, chiral starting materials.

Naturally occurring oxo functions often can be converted into leaving groups and displaced by nucleophiles. Such procedures for pyrimidines begin with uracil compounds, ${ }^{3}$ and guanosine and inosine derivatives are used for purine nucleosides. ${ }^{4}$ However, no convenient, efficient procedures have been

[^0]developed for analogous transformations beginning with amino nucleosides. Approaches reported with cytosine and adenine nucleosides have involved inconvenient methodologies, poor to moderate yields, and/or noxious reagents. ${ }^{5,6}$ A two-stage approach has employed enzymatic deamination followed by transformation of the resulting oxo function. ${ }^{7}$

Requirements of a general methodology for conversion of a heterocyclic amine into a suitable leaving group include the following: (i) the NH_{2} group must be activated by $\mathrm{R} / \mathrm{R}^{\prime}$ substituents that markedly diminish its $\mathrm{p} K_{\mathrm{a}}$ (i.e., to generate a viable leaving group under mild displacement conditions); (ii) this intermediate cannot be so reactive that displacement of the NRR' group occurs during generation or isolation; (iii) nucleophiles must attack at the carbon atom of the parent heterocyclic

[^1]ring and not at the $N R / R^{\prime}$ terminus. Certain potential activating groups have failed the latter requirement. ${ }^{8}$

Divakar and Reese treated uracil nucleosides with phosphoryl chloride/1,2,4-triazole and obtained 4-(1,2,4-triazol-1-yl)pyri-midin-2-one derivatives via in situ replacement of $4-O$-phosphorylated intermediates. The triazole moiety, in turn, was readily displaced from these compounds by other nucleophiles. ${ }^{3 \mathrm{a}}$ Attempted analogous conversions of purin-6-one nucleosides via 6-(triazol-1-yl) and 6-(nitrotriazol-1-yl) intermediates have been reported, but displacement data are sketchy. ${ }^{9}$

We reasoned that isomeric 6-(1,2,4-triazol-4-yl)purine compounds should be promising candidates to fulfill the above requirements. Thermodynamic leaving group ability (triazole $\left.\mathrm{p} K_{\mathrm{a}} \sim 10\right)^{10 \mathrm{a}}$ and kinetic activation of nucleophilic attack at C6 of the purine ring (suppression of purine amidine resonance stabilization involving the amino lone-pair electrons) would be expected. Enhanced "aromaticity" in azole rings should retard undesired nucleophilic attack on the triazole ring. ${ }^{10 \mathrm{~b}}$ Bartlett and Humphrey prepared 1,2-bis[(dimethylamino)methylene]hydrazine (1) and its dihydrochloride (1a) from N, N^{\prime}-diformylhydrazine and thionyl chloride in DMF and reported cyclizations of 1 with amines to give $4-\mathrm{N}$-substituted-1,2,4-triazoles. ${ }^{11 \mathrm{a}}$ Alternative preparations of $\mathbf{1}$ and analogous azines are available. ${ }^{11}$ We recently demonstrated that this reaction can be applied to adenine compounds to generate 6-(1,2,4-triazol-4yl) derivatives which give 6 -substituted purines in high to excellent yields upon treatment with nucleophiles. ${ }^{1}$ We have explored other applications and convenient new methodology and now report an expanded generality with additional amino heterocyclic nucleoside analogues.

Results and Discussion

Relatively few elaborations of amines into triazoles with azine 1/1a have been reported, and in several cases, problems such as the need for a large excess of reagent, long reaction times, and moderate yields were encountered. ${ }^{12}$ No examples of this cyclization had been noted with compounds as acid- and heatsensitive or with amines as weakly basic as adenine nucleosides (adenosine $\mathrm{p} K_{\mathrm{a}} \sim 3.5$). ${ }^{13}$ Therefore, 9-methyladenine ($\mathbf{2}$; Scheme 1) was chosen as a robust model system.

We heated 2 and 1a in DMF at reflux for 18 h followed by addition of 1 a and heating for 2 days to give 9-methyl-6-(1,2,4-triazol-4-yl)purine (3,85\%). Three representative nucleophiles
(8) (a) Kume, A.; Iwase, R.; Sekine, M.; Hata, T. Nucleic Acids Res. 1984, 12, 8525-8538. (b) Tanaka, H.; Morita, K.; Sumiuchi, T. Chem. Lett. 1983, 1661-1664. (c) Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223-2311 and references therein.
(9) (a) Reese, C. B.; Ubasawa, A. Tetrahedron Lett. 1980, 21, 22652268. (b) Adamiak, R. W.; Biala, E.; Skalski, B. Nucleic Acids Res. 1985, 13, 2989-3003. (c) Huynh-Dinh, T.; d'Estaintot, B. L.; Allard, P.; Igolen, J. Tetrahedron Lett. 1985, 26, 431-434. (d) Adamiak, R. W.; Biala, E.; Gdaniec, Z.; Mielewczyk, S.; Skalski, B. Chem. Scr. 1986, 26, 3-6.
(10) Gilchrist, T. L. Heterocyclic Chemistry, 2nd ed.; Wiley: New York, 1992. (a) p 286. (b) pp 285-288, 294.
(11) (a) Bartlett, R. K.; Humphrey, I. R. J. Chem. Soc. C 1967, 16641666. (b) Fohlisch, B.; Braun, R.; Schultze, K. W. Angew. Chem., Int. Ed. Eng. 1967, 6, 361-362. (c) Zelenin, K. N.; Khrustalev, V. A.; Sergutina, V. P. Zh. Org. Khim. 1980, 16, 276-281.
(12) (a) Gilchrist, T. L.; Rees, C. W.; Thomas, C. J. Chem. Soc., Perkin Trans $/$ 1975, 12-18. (b) De Mendoza, J.; Castellanos, M. L.; Fayet, J.; Vertut, M. C.; Elguero, J. J. Chem. Res., Synop. 1980, 2, 50-51. (c) Uno, T.; Takamatsu, M.; Inoue, Y.; Kawahata, Y.; Iuchi, K.; Tsukamoto, G. J. Med. Chem. 1987, 30, 2163-2169. (d) Wigerinck, P.; Van Aerschot, A.; Janssen, G.; Claes, P.; Balzarini, J.; De Clercq, E.; Herdewijn, P. J. Med. Chem. 1990, 33, 868-873. (e) Wadsworth, H. J.; Jenkins, S. M.; Orlek, B. S.; Cassidy, F.; Clark, M. S. G.; Brown, F.; Riley, G. J.; Graves, D.; Hawkins, J.; Naylor, C. B. J. Med. Chem. 1992, 35, 1280-1290. (f) Cerrada, L.; Cudero, J.; Elguero, J.; Pardo, C. J. Chem. Soc., Chem. Commun. 1993, 23, 1713-1714.
(13) Townsend, L. B. In Handbook of Biochemistry and Molecular Biology, Nucleic Acids, 3rd ed.; Fasman, D. G., Ed.; CRC Press: Cleveland, OH, 1975; Vol. 1, pp 271-401.

Scheme 1

Scheme 2

were employed to test the reactivity of 3 toward nucleophilic aromatic substitution. Treatment of 3 with 40% aqueous dimethylamine for 1 h at ambient temperature gave 9 -methyl6 -(dimethylamino)purine (4, 99\% after chromatography). Sodium methoxide in methanol/DMF at ambient temperature gave 6 -methoxy-9-methylpurine (5, 97% recrystallized). Displacement with sodium thiomethoxide in DMF gave 9-methyl-6(methylthio)purine (6, 84% recrystallized).

Efforts next were focused on more challenging nucleoside systems. Attempted application of the above conditions with 1 a and adenosine (8; Scheme 2) resulted in significant basesugar cleavage. The more stable tri- O-acetyl analogue (7) required long reaction times and multiple additions of $\mathbf{1 a}$ to give moderate yields of the desired product. Since protonation of the purine ring would be expected to deactivate the 6 -amino group, attempts were made to neutralize excess acid without serious deactivation of the electrophilic reagent 1a. Pyridine was a good base/solvent, and treatment of 7 with 1a in anhydrous pyridine for 20 h at $100^{\circ} \mathrm{C}$ gave 9 -(2,3,5-tri- O -acetyl-β-D-ribofuranosyl)-6-(1,2,4-triazol-4-yl)purine (11, 88\%).

Treatment of 11 with $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ at ambient temperature gave 6 -(dimethylamino)-9-(β-D-ribofuranosyl)purine (15, 99.8%). Slow passage of a methanolic solution of 11 through a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$resin (presoaked with MeOH) gave 6-methoxy-9-(β-D-ribofuranosyl)purine (16, 89% recrystallized). Treatment of a solution of 11 in DMF with sodium thiomethoxide in DMF gave 6-(methylthio)-9-(β-D-ribofuranosyl)purine (17, 94\%).

Minor cleavage of adenosine occurred under the less acidic cyclization conditions with pyridine. However, the transient protection methodology of Jones ${ }^{14}$ with the sugar hydroxyl groups converted into trimethylsilyl ethers conferred enhanced
(14) Ti, G. S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1982, 104, 1316-1319.
glycosyl bond stability. ${ }^{15}$ Treatment of adenosine with TMSCl and 1 a in anhydrous pyridine at $100^{\circ} \mathrm{C}$ for 24 h followed by deprotection with MeOH gave 9 -(β-D-ribofuranosyl)-6-($1,2,4-$ triazol-4-yl)purine ($\mathbf{1 2}, 94 \%$). Treatment of 12 with 40% $\mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ gave 6-(dimethylamino)-9-(β-D-ribofuranosyl)purine ($\mathbf{1 5}, 92 \%$), and $1 \mathrm{M} \mathrm{NaOMe} / \mathrm{MeOH}$ converted 12 into 6 -methoxy-9-(β-D-ribofuranosyl)purine (16, 98\%).

Treatment of the acid- and heat-sensitive $3^{\prime}, 5^{\prime}$-di- O-acetyl-2^{\prime}-deoxyadenosine (9) with 1 la in pyridine at $100^{\circ} \mathrm{C}$ resulted in $\sim 50 \%$ glycosyl cleavage by the time 9 was consumed. Attempted application of the transient protection conditions with 2^{\prime}-deoxyadenosine (10), TMSCl , and 1 a in pyridine at $100^{\circ} \mathrm{C}$ resulted in nearly quantitative glycosyl bond cleavage in $<2 \mathrm{~h}$, but $\sim 50 \%$ cyclization to the 6-(1,2,4-triazol-4-yl)purine had occured. Attempts to reduce glycosyl cleavage by addition of various bases severely impeded the cyclization reaction. A buffer system of azine 1 and its dihydrochloride 1a (a rough titration of 1 showed $\mathrm{p} K_{\mathrm{a}(1)} \sim 2.4$ and $\mathrm{p} K_{\mathrm{a}(2)} \sim 7.7$) was found to effectively retard glycosyl cleavage and retain adequate electrophilic reactivity for efficient cyclization. Variation of the ratio of $\mathbf{1 / 1 a}$ allowed fine tuning of acidity in order to favor cyclization over cleavage (a more convenient method for the preparation of $1^{11 \mathrm{a}}$ was developed, see the Experimental Section). Thus, 9/1/1a ($\sim 2: 9: 1$) was heated at $100^{\circ} \mathrm{C}$ in pyridine with TMSCl for 48 h to give 9 -(3,5-di- O-acetyl-2-deoxy- β-D-erythro-pentofuranosyl)-6-(1,2,4-triazol-4-yl)purine (13, 83\%). Treatment of 13 with $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ gave 9-(2-deoxy- β-D-erythro-pentofuranosyl)-6-(dimethylamino)purine (18, 97\%). The 1/1a buffer also was generated in situ with 2^{\prime}-deoxyadenosine (10), TMSCl (for protection/glycosyl bond stabilization and HCl formation) and enough 1 to give a proper balance for cyclization. Treatment of $\mathbf{1 0}$ with TMSCl and 4 equiv of 1 in pyridine at $100^{\circ} \mathrm{C}$ for 24 h gave 9 -(2-deoxy- β -D-erythro-pentofuranosyl)-6-(1,2,4-triazol-4-yl)purine (14, 88\%) after processing. Treatment of 14 with $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ gave 18 (96%), and 14 was converted into 9 -(2 -deoxy- β-D-erythro-pentofuranosyl)-6-(methoxy)purine ($19,96 \%$) by application to a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$resin (presoaked with MeOH).
Tubercidin, ${ }^{16 \mathrm{a}} 4$-amino-7-(β-D-ribofuranosyl)pyrrolo[2,3- $\left.\alpha\right]$ pyrimidine ($\mathbf{2 0}$; Scheme 3), was the first example of a series of naturally occurring analogues containing this ring system and is an antibiotic ${ }^{16}$ with diverse biological activity. Coupling methods usually have been employed to obtain substituted tubercidin derivatives. ${ }^{17}$ The 4-chloro compound derived from its 4 -oxo analogue served as a prior substrate for nucleophilic substitution reactions. ${ }^{18}$

Application of the cyclization conditions developed for adenosine converted tubercidin to its triazole derivative. However, $5-20 \%$ of the starting material persisted after 24 h . The enhanced basicity of tubercidin ($\mathrm{p} K_{\mathrm{a}} \sim 5.2$; adenosine, $\mathrm{p} K_{\mathrm{a}} \sim$ $3.5)^{13}$ apparently resulted in amplified protonation of this heterocyclic nucleophile. Therefore, the less acidic conditions developed for 2^{\prime}-deoxyadenosine were employed. Treatment of tubercidin (20) with 1 and TMSCl at $100^{\circ} \mathrm{C}$ for 24 h gave

[^2]Scheme 3

7-(β-D-ribofuranosyl)-4-(1,2,4-triazol-4-yl)pyrrolo[2,3- d]pyrimidine (21, 95\%).
Nucleophilic displacements with pyrrolo[2,3- d]pyrimidines are known to be more difficult than with their purine counterparts. ${ }^{18}$ Complete displacement of the triazole group from 21 with $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ at ambient temperature required 7 h (vs $\sim 10 \mathrm{~min}$ for the purine analogue), and a major byproduct was detected ($\sim 20 \%$, TLC). Pyridine as cosolvent eliminated this byproduct formation but also diminished the reaction rate. Thus, 21 was stirred with pyridine $/ 40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ for 3 days at ambient temperature to give 4-(dimethylamino)-7-(β-D-ribo-furanosyl)pyrrolo[2,3- d]pyrimidine (22, 96\%). In contrast, treatment of 21 with $1 \mathrm{M} \mathrm{NaOMe} / \mathrm{MeOH}$ for 1 h at ambient temperature gave 4-methoxy-7-(β-D-ribofuranosyl)pyrrolo[2,3d] pyrimidine ($23,86 \%$).

The nucleoside antibiotic formycin ${ }^{16 \mathrm{~b}}$ (24; Scheme 3) contains a pyrazolo[4,3-d]pyrimidine ring. Prior methods for introduction of functionality at $\mathbf{C} 7$ involved multistep ring elaborations or conversions of 7-oxo to 7-chloro derivatives. ${ }^{19}$ Application of our triazole methodology to formycin required modified conditions. Owing to the acidic proton at $\mathrm{N} 1,7$-substituted formycin derivatives undergo replacement sluggishly with strongly basic nucleophiles. However, they react readily with less basic nucleophiles. Treatment of $\mathbf{2 4}$ with $\mathbf{1 a}$ in pyridine, or $\mathbf{1 / T M S C l} /$ pyridine, resulted in extensive conversion to 7-(dimethylamino)-3-(β-D-ribofuranosyl)pyrazolo[4,3- d]pyrimidine (26) by a secondary reaction of the triazole intermediate with dimethylamine evolved during ring closure. However, the use of toluene as solvent rendered the dimethylammonium chloride byproduct insoluble without hindering the cyclization reaction. Treatment of 24 with 1 and TMSCl in toluene at $70^{\circ} \mathrm{C}$ for 15 h gave 3-(β-D-ribofuranosyl)-7-(1,2,4-triazol-4-yl)pyrazolo[4,3- d]pyrimidine ($\mathbf{2 5}, \mathbf{7 6 \%}$). Quantitative conversion to fluorescent $\mathbf{2 5}$ was observed (TLC), but significant quantities of product were lost during aqueous workup. Treatment of 25 with excess $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$ in pyridine at $57^{\circ} \mathrm{C}$ gave $\mathbf{2 6}$ quantitatively. Excess $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$ was removed by chromatography [Dowex 1×2 $\left.\left(\mathrm{OH}^{-}\right), 0.1 \mathrm{~N} \mathrm{HOAc}\right]$, and the displaced triazole was removed by sublimation.

In summary, we have shown that the 1,2,4-triazole ring can be elaborated readily onto the 6 -amino group of adenine as well as O-acetyl derivatives of adenosine and 2^{\prime}-deoxyadenosine with

[^3]Table 1. ${ }^{1} \mathrm{H}$ NMR Spectral Data ${ }^{a, b}$

compd	$\begin{gathered} \mathrm{H1}^{\prime} \mathrm{c} \\ \left(J_{1^{\prime}-2^{\prime}}{ }^{\prime}\right. \end{gathered}$	$\begin{aligned} & \mathrm{H}^{\prime \prime}{ }^{\prime} \\ & \left(J_{\left.2^{\prime}-3^{\prime}\right)}\right. \end{aligned}$	$\begin{gathered} \left.\mathrm{H}_{\left(J^{\prime}{ }^{\prime} d\right.}{ }^{\prime}\right) \end{gathered}$	$\begin{gathered} \mathrm{H} 4^{\prime}{ }^{\prime} \\ \left(J_{\left.4^{\prime}-5^{\prime} \cdot 5^{\prime \prime}\right)}\right. \end{gathered}$	$\begin{gathered} \mathrm{H5}^{\prime}, 5^{\prime \prime} \text { ef } \\ \left(J_{\left.5^{\prime}-5^{\prime \prime}\right)}\right. \end{gathered}$	H2 ${ }^{8}$	H88	HT ${ }^{8}$	$\begin{gathered} \mathrm{OH5}^{\prime} h \\ \left({ }^{3} \mathrm{HO}_{\mathrm{HO}}-\mathrm{CH}_{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{OH}^{\prime \mathrm{c}} \\ \left({ }^{3} \mathrm{~J}_{\mathrm{HO}-\mathrm{CH})}\right. \end{gathered}$	$\begin{gathered} \mathrm{OH}^{\prime} / \mathrm{H}^{\prime \prime}{ }^{\prime}{ }^{\left(3 J_{\mathrm{HO}-\mathrm{CH})}\right)} \end{gathered}$	others ${ }^{8}$
3						8.94	8.78	9.66				$3.92\left(\mathrm{CH}_{3}\right)$
11	$\begin{aligned} & 6.44 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 6.08^{i} \\ & (5.6) \end{aligned}$	$\begin{aligned} & 5.69^{i} \\ & (5.4) \end{aligned}$	$4.25-4.47^{e}$	4.25-4.47	8.99	9.02	9.64				2.02, 2.06, 2.14 ($\mathrm{Ac}^{\prime} \mathrm{s}$)
12	$\begin{aligned} & 6.12 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 4.64 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 4.23 \\ & (3.7) \end{aligned}$	$\begin{aligned} & 4.02 \\ & (3.5,3.9) \end{aligned}$	$\begin{aligned} & 3.55-3.79 \\ & (3.76,3.65)^{i j} \end{aligned}$	8.96	9.07	9.66	$\begin{aligned} & 5.14 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 5.30 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 5.62 \\ & (5.9) \end{aligned}$	
13	$6.58{ }^{i}$ (7.6)	$\begin{aligned} & 3.23 \\ & (7.0) \end{aligned}$	5.48	$4.19-4.37^{e}$	$\begin{aligned} & (12.2) \\ & 4.19-4.37 \end{aligned}$	8.97	9.01	9.65			$\begin{aligned} & 2.67^{d} \\ & (3.0)^{k} \end{aligned}$	2.01, 2.12 ($\mathrm{Ac}^{\prime} \mathrm{s}$)
14	$\begin{aligned} & (6.4)^{I} \\ & 6.54^{i} \\ & (6.8) \\ & (6.4)^{I} \end{aligned}$	$\begin{aligned} & (14.3)^{m} \\ & 2.81 \\ & (6.0) \\ & (13.3)^{m} \end{aligned}$	$\begin{aligned} & 4.44-4.52^{e} \\ & (2.6) \end{aligned}$	$\begin{aligned} & 3.93 \\ & (4.3,4.5) \end{aligned}$	$\begin{aligned} & 3.50-3.72 \\ & (3.67,3.6)^{i j} \\ & (11.8) \end{aligned}$	8.94	9.01	9.64	$\begin{aligned} & 5.02 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 5.41 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 2.42^{d} \\ & (3.9)^{k} \end{aligned}$	
15	$\begin{aligned} & 5.91 \\ & (5.9) \end{aligned}$	$\begin{aligned} & 4.58 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 4.15 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 3.96 \\ & (3.6,3.5) \end{aligned}$	$\begin{aligned} & 3.34-3.73 \\ & (3.68,3.55)^{i j} \\ & (12.2) \end{aligned}$	8.22	8.38	-	$\begin{aligned} & 5.38^{i} \\ & (4.6,6.8) \end{aligned}$	$\begin{aligned} & 5.20 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 5.46 \\ & (6.0) \end{aligned}$	$\begin{aligned} & 3.34-3.73^{e}\left(\mathrm{NMe}_{2}\right) \\ & 3.46^{i, n}\left(\mathrm{NMe}_{2}\right) \end{aligned}$
16	$\begin{aligned} & 6.00 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 4.60 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 4.18 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 3.98 \\ & (3.6,3.9) \end{aligned}$	$\begin{aligned} & 3.51-3.75 \\ & (3.68,3.57)^{i j} \\ & (12.2) \end{aligned}$	8.57	8.64	-	$\begin{aligned} & 5.16 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 5.25 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 5.53 \\ & (6.0) \end{aligned}$	4.11 (OMe)
17	$\begin{aligned} & 6.00 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 4.60 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 4.18 \\ & (3.5) \end{aligned}$	$\begin{aligned} & 3.97 \\ & (3.8,4.0) \end{aligned}$	$\begin{aligned} & 3.51-3.75 \\ & (3.70,3.58)^{i j} \\ & (12.2) \end{aligned}$	8.71	8.76	-	$\begin{aligned} & 5.13 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 5.25 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 5.54 \\ & (5.9) \end{aligned}$	2.68 (SMe)
18	$\begin{aligned} & 6.37^{i} \\ & (7.6) \\ & (6.1)^{i} \end{aligned}$	$\begin{aligned} & 2.69 \\ & (5.7) \\ & (13.2)^{m} \end{aligned}$	$\begin{aligned} & 4.41^{e} \\ & (2.6) \end{aligned}$	$\begin{aligned} & 3.88 \\ & (3.9,4.3) \end{aligned}$	$\begin{aligned} & 3.46-3.70 \\ & (3.62,3.52)^{i j} \\ & (12.1) \end{aligned}$	8.21	8.36	-	$\begin{aligned} & 5.21 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 5.32 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 2.26^{d} \\ & (3.0)^{k} \end{aligned}$	$\begin{aligned} & 3.46-3.70^{e}\left(\mathrm{NMe}_{2}\right) \\ & 3.41^{1 / n}\left(\mathrm{NMe}_{2}\right) \end{aligned}$
19	$\begin{aligned} & 6.44^{i} \\ & (7.3) \\ & (6.2)^{i} \end{aligned}$	$\begin{aligned} & 2.74 \\ & (5.9) \\ & (13.3)^{m} \end{aligned}$	$\begin{aligned} & 4.43^{e} \\ & (2.7) \end{aligned}$	$\begin{aligned} & 3.89 \\ & (4.5,4.7) \end{aligned}$	$\begin{aligned} & 3.44-3.70 \\ & (3.63,3.53)^{i j} \\ & (11.8) \end{aligned}$	8.55	8.60	-	$\begin{aligned} & 5.04 \\ & (5.6) \end{aligned}$	$\begin{aligned} & 5.36 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 2.32^{d} \\ & (3.4)^{k} \end{aligned}$	4.10 (OMe)

compd	$\begin{gathered} \hline \mathrm{H} 1^{\prime} \mathrm{c} \\ \left(\mathrm{~J}^{\prime}-2^{\prime}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}^{\prime}{ }^{\prime} d \\ \left(\mathrm{~J}^{\prime}{ }^{\prime} 3^{\prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}^{\prime}{ }^{\prime} \\ \left(\mathrm{J}_{3^{\prime}-44^{4}}\right. \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H} 4^{\prime}{ }^{d} \\ \left(J_{\left.4^{\prime}-5^{\prime}, 5^{\prime \prime}\right)}\right. \end{gathered}$	$\begin{gathered} \mathrm{H5}^{\prime}, 5^{\prime \prime} \text { ef } \\ \left(J_{5^{\prime}} 5^{\prime \prime}\right) \end{gathered}$	H2 ${ }^{8}$	H6 ${ }^{\text {c }}$	$\begin{gathered} \mathrm{H5}^{c} \\ \left(J_{5-6}\right) \\ \hline \end{gathered}$	HT ${ }^{8}$	$\begin{gathered} \mathrm{OH5}^{\prime h} \\ \left({ }^{3} \mathrm{HO}_{\mathrm{HO}}-\mathrm{CH}_{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{OH}^{\prime \mathrm{c}} \\ \left({ }^{3} \mathrm{~J}_{\mathrm{HO}-\mathrm{CH})}\right. \end{gathered}$	$\begin{gathered} \begin{array}{c} \mathrm{OH} 2^{\prime} \mathrm{c} \\ \left({ }^{3} \mathrm{JO}-\mathrm{CH}\right) \end{array} \\ \hline \end{gathered}$	others ${ }^{8}$
21	$\begin{aligned} & \hline 6.30 \\ & (5.9) \end{aligned}$	$\begin{aligned} & 4.46 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 4.16 \\ & (3.3) \end{aligned}$	$\begin{aligned} & \hline 3.97 \\ & (4.0,4.0) \end{aligned}$	$\begin{aligned} & 3.53-3.74 \\ & (3.68,3.58)^{i j} \\ & (12.0) \end{aligned}$	8.82	8.12	$\begin{aligned} & \hline 7.26 \\ & (3.9) \end{aligned}$	9.52	$\begin{aligned} & \hline 5.10 \\ & (5.4) \end{aligned}$	$\begin{aligned} & 5.23 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 5.44 \\ & (6.2) \end{aligned}$	
22	$\begin{aligned} & 6.08 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 4.39 \\ & (5.0) \end{aligned}$	$\begin{aligned} & 4.08 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 3.89 \\ & (3.4,3.8) \end{aligned}$	$\begin{aligned} & 3.46-3.68 \\ & (3.62,3.53)^{i j} \\ & (12.2) \end{aligned}$	8.13	7.42	$\begin{aligned} & 6.72 \\ & (3.8) \end{aligned}$	-	$5.10-5.30^{\circ}$	$5.10-5.30^{e}$	$5.10-5.30^{\text {e }}$	$3.30\left(\mathrm{NMe}_{2}\right)$
23	$\begin{aligned} & 6.15 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 4.43^{i j} \\ & (5.2) \end{aligned}$	$\begin{aligned} & 4.12^{i j} \\ & (3.1) \end{aligned}$	$\begin{aligned} & 3.95^{j} \\ & (3.7,4.0) \end{aligned}$	$\begin{aligned} & (3.62,3.58)^{i j} \\ & (12.0) \end{aligned}$	8.44	7.68	$\begin{aligned} & 6.60 \\ & \text { (3.7) } \end{aligned}$	-	$5.0-5.4^{0}$	$5.0-5.4^{\circ}$	$5.0-5.4^{\circ}$	4.05 (OMe)

compd	$\begin{gathered} \mathrm{Hl}^{\prime} \mathrm{e} \\ \left(J_{1^{\prime}-2^{\prime}}\right) \end{gathered}$	$\begin{gathered} \mathrm{H}^{\prime}{ }^{\prime}{ }^{\prime} \\ \left(J_{2^{\prime}-3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H3}^{\prime}{ }_{\left(J_{3^{\prime}-4}{ }^{\prime}\right)} \end{gathered}$	$\underset{\left(J_{4^{\prime}-5^{\prime}, 5^{\prime \prime}}\right)}{\mathrm{H}^{\prime}{ }^{\prime}}$	$\begin{aligned} & \mathrm{H5}^{\prime}, 5^{\prime \prime} \text { if } \\ & \left(J_{\left.5^{\prime}-5^{\prime \prime}\right)}\right. \end{aligned}$	H58	-	-	HT^{8}	OH5'e	$\mathrm{OH}^{\prime}{ }^{e}$	$\mathrm{OH} 2^{\prime}{ }^{\text {e }}$	others
25	$\begin{aligned} & 5.07-5.21 \\ & 5.18^{c \cdot j} \\ & (6.9) \end{aligned}$	$\begin{aligned} & 4.61 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 4.13 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 3.95 \\ & (4.2,4.6) \end{aligned}$	$\begin{aligned} & 3.67,3.53 \\ & (12.0) \end{aligned}$	8.96	-	-	9.59	5.07-5.21	5.07-5.21	5.07-5.21	(NH not observed)
26	$\begin{aligned} & 4.91-5.10 \\ & 5.00^{c j} \\ & (7.4) \end{aligned}$	$\begin{aligned} & 4.47^{i j} \\ & (5.0) \end{aligned}$	$\begin{aligned} & 4.09^{i j} \\ & (2.7) \end{aligned}$	$\begin{aligned} & 3.95^{c j} \\ & (2.9,3.2) \end{aligned}$	$\begin{aligned} & (3.64,3.54)^{j} \\ & (12.2) \end{aligned}$	8.14	-	-	-	4.91-5.10	4.91-5.10	4.91-5.10	$3.43^{n}\left(\mathrm{NMe}_{2}\right)$ (NH not observed)

[^4]inexpensive, readily available reagents. This cyclization also can be performed with unprotected adenosine, 2^{\prime}-deoxyadenosine, tubercidin, and formycin (with transient trimethylsilyl protection of the hydroxyl groups). Amines used in previously reported cyclizations were quite basic, and the unprotonated azine was generally employed. Formation of triazoles from the less basic amines used in the present study required more electrophilic (protonated) forms of the azine.
The triazole ring is readily displaced by common nucleophiles from these respective 6-, 4-, and 7-(1,2,4-triazol-4-yl) derivatives of purine, pyrrolo $[2,3-d]$ pyrimidine, and pyrazolo $[4,3-d]$ pyrimidine nucleosides. The (1,2,4-triazol-4-yl)nucleoside intermediates are easily purified (transient protection procedures normally give analytically pure products after extraction and deprotection/filtration), and the isolated solids appear to be stable indefinitely at room temperature under normal laboratory conditions. They should be amenable to mild oligonucleotide synthesis procedures and provide new monomeric units for postsynthetic modifications in nucleic acid chemistry.

Experimental Section

Uncorrected melting points were determined with a capillary tube apparatus. UV spectra were determined with solutions in MeOH unless otherwise noted. NMR spectra were obtained with solutions in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ (Me4 Si internal), ${ }^{1} \mathrm{H}$ at 200 MHz (Table 1) and ${ }^{13} \mathrm{C}$ at 50.3 MHz (Table 2) unless otherwise noted. Mass spectra were determined by direct probe introduction at 20 eV . TLC was performed with Whatman Al Sil G/UV 254 plates. Reagent grade chemicals were used. TMSCl and reaction solvents except toluene were distilled before use. Pyridine was dried by reflux over and distillation from CaH_{2}. Cy clization reactions were conducted under an atmosphere of N_{2} or Ar with a leak-proof Teflon sleeve on the ground-glass joint of the condenser. Volatile materials were flash evaporated at $\angle 35^{\circ} \mathrm{C}$ under water aspirator or mechanical oil pump vacuum. Solid products were dried in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$ for ≥ 1 day, and stable compounds were dried at elevated temperatures. "Diffusion crystallization" was performed as described. ${ }^{20}$ Yields can suffer markedly if the optimized
(20) Robins, M. J.; Mengel, R.; Jones, R. A.; Fouron, Y. J. Am. Chem. Soc. 1976, 98, 8204-8213.

Table 2. ${ }^{13} \mathrm{C}$ NMR Spectral Data ${ }^{a, b}$

| compd | C 2 | C 4 | C 5 | C 6 | C 8 | Cl^{\prime} | C^{\prime} | C^{\prime} | C^{\prime} | C^{\prime} | C (triazole) | others |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3}^{c}$ | 151.64 | 142.22 | 121.77 | 154.04 | 148.24 | | | | | | 140.77 | $29.97\left(\mathrm{CH}_{3}\right)$ |
| $\mathbf{1 1}^{d}$ | 153.25 | 144.10 | 123.60 | 154.05 | 144.46 | 87.32 | 73.51 | 70.83 | 80.98 | 63.23 | 141.34 | $20.57,20.72,20.97(\mathrm{Ac}) ; 170.03,170.19,170.86(\mathrm{Ac})$ |
| $\mathbf{1 2}^{2}$ | 152.32 | 143.03 | 122.85 | 153.75 | 146.21 | 88.32 | 74.24 | 70.35 | 86.04 | 61.28 | 141.19 | |
| $\mathbf{1 3}^{d}$ | 152.89 | 143.88 | 123.57 | 153.83 | 144.19 | 83.47 | 38.16 | 74.70 | 85.66 | 64.02 | 141.25 | $21.27,21.38(\mathrm{Ac}) ; 170.65,170.72(\mathrm{Ac})$ |
| $\mathbf{1 4}$ | 152.14 | 142.84 | 122.83 | 153.44 | 146.15 | 84.45 | e | 70.59 | 88.26 | 61.49 | 141.19 | |
| $\mathbf{1 5}$ | 151.96 | 150.00 | 119.99 | 154.55 | 138.81 | 88.02 | 73.62 | 70.65 | 85.95 | 61.67 | | $\left(\mathrm{NMe}_{2}\right)^{e}$ |
| $\mathbf{1 6}$ | 151.87 | 151.99 | 121.32 | 160.67 | 142.63 | 87.99 | 73.89 | 70.48 | 85.89 | 61.45 | | $54.37(\mathrm{OMe})$ |
| $\mathbf{1 7}$ | 151.85 | 148.10 | 131.40 | 160.74 | 143.32 | 87.92 | 73.89 | 70.41 | 85.88 | 61.38 | | $11.46(\mathrm{SMe})$ |
| $\mathbf{1 8}$ | 151.91 | 149.58 | 119.79 | 154.46 | 138.42 | 84.18 | e | 71.02 | 87.87 | 61.86 | | $\left(\mathrm{NMe}_{2}\right)^{e}$ |
| $\mathbf{1 9}$ | 151.73 | 151.89 | 121.37 | 160.59 | 142.52 | 84.13 | e | 70.94 | 88.26 | 61.87 | | $54.22(\mathrm{OMe})$ |

compd	C2	C7a	C4a	C4	C6	C1'	C2'	C3'	C4'	C5'	C (triazole)	others	
21	150.78	145.03	107.70	153.62	129.20	0 87.31	74.58	70.78	85.66	61.70	141.32	100.03 (C5)	
22	150.51	150.84	103.37	157.14	121.83	37.49	73.79	70.71	85.08	61.83		102.89 (C5); $\left(\mathrm{NMe}_{2}\right)^{e}$	
23	150.84	152.16	98.94	162.54	125.19	9 87.40	74.30	70.84	85.40	61.87		105.44 (C5); 53.76 (OMe)	
compd	C5	C3a	C7a	C7		C3	Cl^{\prime}	C2 ${ }^{\prime}$	C3'	C4'	C5'	C (triazole)	others
$24^{g . h}$	148.71	$137.53^{\text {i }}$	131.87	154.40		140.48^{i}	78.00	74.83	71.51	84.60	61.87		
$25^{\text {hj }}$	146.25	140.66^{i}	131.25	143.87		141.22^{i}	77.22	74.49	71.21	84.60	61.57	141.54	
$26^{8} h$	148.56	$137.85^{\text {i }}$	133.30	154.14		$139.79^{\text {i }}$	77.86	74.68	71.48	84.60	61.78		43.68 (NMe_{2})

${ }^{a}$ Chemical shifts (δ) in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ at 50.3 MHz unless noted otherwise. ${ }^{b}$ Proton-decoupled singlets. ${ }^{c}$ At 125.7 MHz in $\mathrm{Me} 2 \mathrm{SO}-d_{6} .{ }^{d}$ At 50.3 MHz in $\mathrm{CDCl}_{3 .}{ }^{e}$ Obscured by solvent resonance. ${ }^{f}$ Chenon, M.-T.; Pugmire, R. J.; Grant, D. M.; Panzica, R. P.; Townsend, L. B. J. Am. Chem. Soc. 1975, $97,4627-4636 .{ }^{8}$ At 125.7 MHz in $\mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} \sim 11 .{ }^{h}$ Diffuse peaks in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ or neutral $\mathrm{D}_{2} \mathrm{O}$. ${ }^{i}$ Assignments might be reversed. ${ }^{j}$ At 50.3 MHz in $\mathrm{NaOD} / \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} \sim 11$.
conditions described are altered for the concentrated triazole cyclization reactions, ice-cold workup temperatures, etc.

1,2-Bis[(dimethylamino)methylene]hydrazine (1). Dihydrochloride $1 \mathbf{a}^{11 \mathrm{a}}(4.33 \mathrm{~g}, 20.1 \mathrm{mmol})$ was stirred with $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{M}, 70$ mL) and extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined organic phase was washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a small layer of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. EtOAc was added to the residue and evaporated ($2 x$), and the solid was dried (0.5 h under water aspirator vacuum, since the compound sublimes) to give $1(2.67 \mathrm{~g}$, 94%): mp $75.5-77.5^{\circ} \mathrm{C}$ (lit. ${ }^{11 \mathrm{a}} \mathrm{mp} 79-81^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 2.72$ (s, 6 , NMe_{2}), 7.69 (s, $2, \mathrm{~N}=\mathrm{CH}$).

9-Methyl-6-(1,2,4-triazol-4-yl)purine (3). A suspension of $1 \mathbf{1 a}$ (2.54 $\mathrm{g}, 11.8 \mathrm{mmol}$) and 9 -methyladenine ($2 ; 1.33 \mathrm{~g}, 8.9 \mathrm{mmol}$) in DMF $(250 \mathrm{~mL})$ was refluxed for 18 h . Additional 1 a was added (1.47 g , 6.8 mmol), and heating was continued for 2 days. Volatiles were evaporated, and the residue was coevaporated ($\mathrm{MeOH}, 3 \times$). The solid was suspended in MeOH , filtered, and dried to give $3(1.53 \mathrm{~g}, 85 \%)$. A small analytical sample was recrystallized (MeOH) to give 3: mp $292.5-294^{\circ} \mathrm{C}$; UV max $276 \mathrm{~nm}(\epsilon 13300)$, min $235 \mathrm{~nm}(\epsilon 2200)$; MS $m / z 201\left(90, \mathrm{M}^{+}\right.$). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{7}$ (201.2): C, 47.76; H , 3.51; N, 48.73. Found: C, 47.91; H, 3.46; N, 48.66.

9-Methyl-6-(dimethylamino)purine (4). A solution of $\mathbf{3}(80.3 \mathrm{mg}$, 0.40 mmol) in $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was stirred for 1 h at ambient temperature. Volatiles were evaporated, and the residue was purified by chromatography [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right), \mathrm{H}_{2} \mathrm{O}$] and dried to give analytically pure 4 ($70.3 \mathrm{mg}, 99 \%$): $\mathrm{mp} 113.5-115{ }^{\circ} \mathrm{C}$ (lit. $.^{21} \mathrm{mp} 114-$ $115^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR spectrum agreed with literature values. ${ }^{22}$ Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{5}$ (177.2): C, 54.22; H, 6.26; N, 39.52. Found: C, 54.10; H, 6.21; N, 39.53.

6-Methoxy-9-methylpurine (5). A solution of $\mathbf{3}$ ($201 \mathrm{mg}, 1.0$ mmol) in DMF (4 mL) was treated with $\mathrm{NaOMe} / \mathrm{MeOH}(1 \mathrm{M}, 5 \mathrm{~mL}$) for 30 min at ambient temperature and neutralized with HOAc. Volatiles were evaporated, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL}, 10-15 \times$). The combined organic phase was evaporated, and the residue was dried and "diffusion crystallized" ($\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) to give 5 ($159 \mathrm{mg}, 97 \%$). This material was dried at $110^{\circ} \mathrm{C}$ in vacuo (which caused loss of product by sublimation) to yield 5 ($140 \mathrm{mg}, 85 \%$): mp $149-150{ }^{\circ} \mathrm{C}$ (lit. ${ }^{23} \mathrm{mp}$ $150-151^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR spectrum agreed with literature values. ${ }^{23}$

9-Methyl-6-(methylthio)purine (6). A deoxygenated solution of NaSMe ($109 \mathrm{mg}, 1.6 \mathrm{mmol}$) in DMF (6 mL) was added to 3 (201 mg , 1.0 mmol) under N_{2} and stirred for 1.5 h . The mixture was neutralized

[^5] 638-645.
(22) Fujii, T.; Saito, T.; Haya, T.; Kizu, K.; Kumazawa, Y.; Nakajima, S. Chem. Pharm. Bull. 1987, 35, 4482-4493.
(23) Barlin, G. B.; Fenn, M. D. Aust. J. Chem. 1983, 36, 633-638.
(HOAc), volatiles were evaporated, and the residue was partitioned $\left[\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL}) / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})\right]$. The aqueous layer was extracted $\left(\mathrm{CH}_{2}-\right.$ Cl_{2}) until product was removed, and the combined organic layer was washed ($1 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~mL}$). The acid layer was extracted $\left(\mathrm{CHCl}_{3}\right)$, and the combined organic layers were washed [saturated $\mathrm{NaHCO}_{3} /$ $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and brine $\left.(3 \mathrm{~mL})\right]$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The crude product (165 mg) was "diffusion crystallized" ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane) to give 5 ($151 \mathrm{mg}, 84 \%$): mp $166.5-168{ }^{\circ} \mathrm{C}$ (lit..$^{24} \mathrm{mp} \mathrm{171-172}{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR spectrum agreed with literature values. ${ }^{22}$

9-(2,3,5-Tri- O-acetyl- $\boldsymbol{\beta}$-d-ribofuranosyl)-6-(1,2,4-triazol-4-yl)purine (11). Method A. A suspension of $2^{\prime}, 3^{\prime}, 5^{\prime}$ tri- O-acetyladenosine ($7 ; 106 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $1 \mathrm{a}(205 \mathrm{mg}, 0.95 \mathrm{mmol})$ in pyridine (0.5 mL) was heated at $100^{\circ} \mathrm{C}$ with stirring for 20 h . Volatiles were evaporated, and the residue was partitioned $\left[\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL}) / E t \mathrm{OAc}(8\right.$ $\mathrm{mL})](3 \times)$. The organic layer was washed (brine), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue was purified by centrifugal chromatography (Chromatotron, $1-\mathrm{mm}$ rotor thickness, EtOAc) to give 11 ($106.3 \mathrm{mg}, 88 \%$). A small portion was recrystallized to give 11: mp $136.5-137^{\circ} \mathrm{C}$; UV max $274,256 \mathrm{~nm}(\epsilon 12700,8200)$, min 259,231 nm ($\epsilon 100,2000$); MS $m / z 445\left(6, \mathrm{M}^{+}\right), 386(10, \mathrm{M}-\mathrm{OAc}), 326$ (6, $\mathrm{M}-2 \mathrm{OAc}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{7}(445.4): \mathrm{C}, 48.54 ; \mathrm{H}, 4.30$; N, 22.01. Found: C, 48.45; H, 4.38; N, 21.83.

Method B. A cold, stirred suspension of $12(1.014 \mathrm{~g}, 3.18 \mathrm{mmol})$ in pyridine $(6 \mathrm{~mL})$ was treated with $\mathrm{Ac}_{2} \mathrm{O}(1.04 \mathrm{~mL}, 11 \mathrm{mmol})$ and stirred for 17.5 h at $5^{\circ} \mathrm{C}$. $\mathrm{MeOH}(5 \mathrm{~mL})$ was added, stirring was continued for 30 min at ambient temperature, and volatiles were evaporated. The residue was dissolved in cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, and this solution was washed [brine $/ 2 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(1: 1,10 \mathrm{~mL}$); brine/ saturated $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(1: 1,40 \mathrm{~mL})$], dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Gentle heating of the solid foam in $\mathrm{Et}_{2} \mathrm{O}(75-100 \mathrm{~mL})$ resulted in formation of a fine white solid suspension. Volatiles were evaporated, and the residue was dried to give analytically pure $11(1.40 \mathrm{~g}, 99 \%)$: $\mathrm{mp} 135.5-136{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR spectrum identical to that from method A.

9-(β-d-Ribofuranosyl)-6-(1,2,4-triazol-4-yl)purine (12). Dried pyridine was added to adenosine ($8 ; 543 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $1 \mathrm{a}(1.53 \mathrm{~g}$, 7.1 mmol), and the mixture was evaporated. Pyridine (3 mL) and TMSCl ($1.02 \mathrm{~mL}, 8.0 \mathrm{mmol}$) were added, the mixture was heated at $100^{\circ} \mathrm{C}(24 \mathrm{~h})$, and volatiles were evaporated. The residue was dissolved in ice-cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~mL}\right.$), washed $\left\{\left[\right.\right.$ brine (30 mL) $+\mathrm{H}_{2} \mathrm{O}$ $(18 \mathrm{~mL})]$ and $\left.\left[b r i n e(30 \mathrm{~mL})+\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{M}, 6 \mathrm{~mL})\right]\right\}$, filtered through $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was dissolved in MeOH (30 mL), stirred (2 h), and concentrated (to $\sim 20 \%$), and the white precipitate was filtered off. This solid was washed [$\mathrm{MeOH}(5 \mathrm{~mL}$) and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$], and a second crop was collected from the mother

[^6]liquors. Both crops were dried to give 12 ($609 \mathrm{mg}, 94 \%$): mp ~223 ${ }^{\circ} \mathrm{C}$ (variable); UV max $275 \mathrm{~nm}(\epsilon 13500), \min 236 \mathrm{~nm}(\epsilon 2900)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{4}$ (319.3): C, 45.14; H, 4.10; $\mathrm{N}, 30.71$. Found: C, 44.97; H, 4.08; N, 30.72 .

9-(3,5-Di- O-acetyl-2-deoxy- $\boldsymbol{\beta}$-d-erythro-pentofuranosyl)-6-(1,2,4-triazol-4-yl)purine (13). Dried pyridine was added to $3^{\prime}, 5^{\prime}$-di- O-acetyl-2^{\prime}-deoxyadenosine ($9 ; 139 \mathrm{mg}, 0.41 \mathrm{mmol}$), 1a ($45 \mathrm{mg}, 0.21 \mathrm{mmol}$), and $1(267 \mathrm{mg}, 1.88 \mathrm{mmol})$, and the mixture was evaporated. Pyridine $(1 \mathrm{~mL})$ and $\mathrm{TMSCl}(0.21 \mathrm{~mL}, 1.7 \mathrm{mmol})$ were added, the mixture was heated at $100^{\circ} \mathrm{C}(45 \mathrm{~h})$, additional TMSCl (" 1 drop") was added, and heating was continued for 3 h . Volatiles were evaporated, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), and the solution was washed [brine $\left.(10 \mathrm{~mL})+\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{M}, 7 \mathrm{~mL})\right]$. The organic layer was dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}) and concentrated to half-volume, an equal volume of EtOAc was added, and the solution was evaporated. The white solid was dried to give 149 mg (93%) of crude product which was recrystallized (EtOAc) to give $\mathbf{1 3}$ ($132 \mathrm{mg}, 82 \%$): $\mathrm{mp} 179-179.5^{\circ} \mathrm{C}$; UV max $275 \mathrm{~nm}(\epsilon$ 13900), shoulder $258 \mathrm{~nm}(\epsilon 9100)$, $\min 232 \mathrm{~nm}(\epsilon 3000)$; MS $m / z 387$ (6, M^{+}). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{O}_{5}$ (387.4): C, 49.61; H, 4.42; N , 25.31. Found: C, 49.73; H, 4.53; N, 25.46.

9-(2-Deoxy- β-d-erythro-pentofuranosyl)-6-(1,2,4-triazol-4-yl)purine (14). Dried pyridine was added to 2^{\prime}-deoxyadenosine (10; 845 $\mathrm{mg}, 3.4 \mathrm{mmol})$ and $1(1.91 \mathrm{~g}, 13.4 \mathrm{mmol})$, and the mixture was evaporated ($3 \times$). Pyridine (8 mL) and TMSCl ($0.85 \mathrm{~mL}, 6.7 \mathrm{mmol}$) were added, and the mixture was heated at $100^{\circ} \mathrm{C}(24 \mathrm{~h})$. After cooling, TMSCl (0.34 mL) was added, the mixture was stirred (15 min), and volatiles were evaporated. The residue was dissolved in ice-cold $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(85 \mathrm{~mL})$, and the solution was washed $\{$ with cold brine $(34 \mathrm{~mL})+$ saturated $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(17 \mathrm{~mL})$ and then [brine (34 mL) $+\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{M}, 12 \mathrm{~mL})](2 \times)\}$. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and stirred overnight. The resulting suspension was evaporated, and the residue was dried, suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(9: 1,7 \mathrm{~mL})$, and filtered. The white solid was dried to give 14 ($895 \mathrm{mg}, 88 \%$): $\mathrm{mp} \sim 180^{\circ} \mathrm{C}$, softening, ~ 274 ${ }^{\circ} \mathrm{C}$ dec (variable); UV max $275 \mathrm{~nm}(\epsilon 13200), \min 234 \mathrm{~nm}(\epsilon 2700)$; MS $m / z 304\left(2, \mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{3}$ (303.3): C, 47.52; H, 4.32; N, 32.33. Found: C, 47.32; H, 4.60; N, 32.06.

Excess azine 1 was recovered by treatment of the combined aqueous washes ($\sim 125 \mathrm{~mL}$) with $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{M}, 15 \mathrm{~mL})$ and extraction with CHCl_{3} ($3 \times 50 \mathrm{~mL}$). Volatiles were evaporated, and crude 1 was purified by chromatography [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right), \mathrm{H}_{2} \mathrm{O}$]. The eluate was evaporated, EtOAc was added and evaporated ($3 x$), and the solid was dried to give $1(1.19 \mathrm{~g}, 83 \%$ recovery $)$.
6-(Dimethylamino)-9-(β-D-ribofuranosyl)purine (15). Method A. A solution of $11(118.2 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was stirred at ambient temperature for 40 min . The solution was concentrated ($\sim 1 \mathrm{~mL}$) and chromatographed [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$; $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1,10 \mathrm{~mL})$, and $\left.\mathrm{MeOH}(50 \mathrm{~mL})\right]$. Pooled fractions were evaporated, $\mathrm{CH}_{3} \mathrm{CN}$ was added and evaporated ($4 \times$), and the fine white solid was dried to give analytically pure 15 (78.2 $\mathrm{mg}, 99.8 \%$): mp $182-183.5^{\circ} \mathrm{C}$ (lit. ${ }^{25} \mathrm{mp} 183-184^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR spectrum agreed with literature values. ${ }^{26}$ Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{77} \mathrm{~N}_{5} \mathrm{O}_{4}$ (295.3): C, 48.81; H, 5.80; N, 23.72. Found: C, 48.91; H, 5.78; N, 23.55.

Method B. A solution of $\mathbf{1 2}(75.7 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathbf{4 0} \% \mathrm{HNMe}_{2} /$ $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was stirred at ambient temperature and processed as in method A. After chromatography, the residue was dried to give 15 ($64.8 \mathrm{mg}, 93 \%$): $\mathrm{mp} 181.5-183^{\circ} \mathrm{C}$.

6-Methoxy-9-(β-D-ribofuranosyl)purine (16). Method A. A solution of 11 ($173 \mathrm{mg}, 0.39 \mathrm{mmol}$) in MeOH was applied to a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$[prewashed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ (1:1), and $\mathrm{MeOH}]$ and allowed to stand overnight. The product was eluted (MeOH), volatiles were evaporated, and the residue was "diffusion crystallized" ($\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) to give 16 ($98.2 \mathrm{mg}, 90 \%$): mp 138.5$140^{\circ} \mathrm{C}$ (lit. ${ }^{27} \mathrm{mp} 144-146^{\circ} \mathrm{C}$).

Method B. A solution of $12(55.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ in pyridine (~ 0.5 mL) was stirred with $\mathrm{NaOMe} / \mathrm{MeOH}(1 \mathrm{M}, 0.5 \mathrm{~mL})$ for 2.5 h at ambient

[^7]temperature and neutralized (HOAc, "six drops"). Volatiles were evaporated, and the residue was chromatographed [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$; $\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1), \mathrm{MeOH}\right]$. Product fractions were evaporated, EtOAc was added (the suspension was heated) and evaporated ($2 \times$), and the resulting white solid was dried to give 16 ($48 \mathrm{mg}, 98 \%$): mp $140-143^{\circ} \mathrm{C}$.
6 -(Methylthio)-9-(β-D-ribofuranosyl)purine (17). To a solution of $11(116 \mathrm{mg}, 0.26 \mathrm{mmol}$) in DMF (2 mL) under Ar was added a deoxygenated solution of NaSMe ($72.7 \mathrm{mg}, 1.04 \mathrm{mmol}$) in DMF (3 mL), and stirring was continued for 15 min at ambient temperature. The solution was sparged (Ar), neutralized with $\mathrm{NH}_{4} \mathrm{Cl}(65 \mathrm{mg}, 1.2$ $\mathrm{mmol})$, and evaporated, and the residue was stirred with $\mathrm{NH}_{3} / \mathrm{MeOH}$ $(6 \mathrm{~mL})$ for 3 days. Volatiles were evaporated, and the residue was treated with pyridine (1 mL) and $\mathrm{TMSCl}(0.2-0.3 \mathrm{~mL})$ and sonicated to give a white solid suspension. Volatiles were evaporated, and the residue was partitioned \{ice-cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL}) /[$ brine $(4 \mathrm{~mL})+1$ $\left.\left.\mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})\right]\right\}$. The organic layer was washed [brine (4 mL) + saturated $\left.\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})\right]$, passed through a layer of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was stirred with $\mathrm{MeOH}(3 \mathrm{~mL})$ for 4 days at ambient temperature, and the solution was evaporated. Addition and evaporation of $\mathrm{CH}_{3} \mathrm{CN}(2 \times)$ gave a white solid which was dried to give analytically pure $17(73 \mathrm{mg}, 94 \%)$: $\mathrm{mp} 125-126^{\circ} \mathrm{C}$, softening, $161.5-163^{\circ} \mathrm{C}$ (lit. ${ }^{4 \mathrm{~h}} \mathrm{mp} 163-164^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR spectrum agreed with literature values. ${ }^{28}$ Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (298.3): C, 44.29; H, 4.73; N, 18.78. Found: C, 44.41; H, 4.76; N, 18.79.
9-(2-Deoxy- $\boldsymbol{\beta}$-D-erythro-pentofuranosyl)-6-(dimethylamino)purine (18). Method A. A suspension of $13(49.8 \mathrm{mg}, 0.13 \mathrm{mmol})$ in pyridine (1 mL) was stirred with $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 4 h , and volatiles were evaporated. The residue was purified by chromatography at $5^{\circ} \mathrm{C}$ for enhanced adsorption [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$: washed with $\mathrm{H}_{2} \mathrm{O}(14 \mathrm{~mL})$, eluted with $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1,2 \mathrm{~mL})$ and $\mathrm{MeOH}(8$ $\mathrm{mL})]$. The eluate was evaporated, $\mathrm{CH}_{3} \mathrm{CN}$ was added and evaporated $(2 \times)$, and the white solid was dried to give 18 ($35.1 \mathrm{mg}, 98 \%$): mp $171.5-173^{\circ} \mathrm{C}$ (lit. ${ }^{29} \mathrm{mp} 177.5-179^{\circ} \mathrm{C}$); UV (MeOH) max $274 \mathrm{~nm}(\epsilon$ $18600) \min 235 \mathrm{~nm}(\epsilon 1800)$; MS m/z $279\left(29, \mathrm{M}^{+}\right)$.
Method B. A cold ($5^{\circ} \mathrm{C}$) suspension of $\mathbf{1 4}(40.6 \mathrm{mg}, 0.13 \mathrm{mmol})$ was stirred with cold $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}$ (2 mL) for 15 min , concentrated to half-volume, and chromatographed ["cold" Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$: $\left.\mathrm{H}_{2} \mathrm{O}(\sim 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1, \sim 1 \mathrm{~mL}), \mathrm{MeOH}(\sim 5 \mathrm{~mL})\right]$. The eluate was evaporated, $\mathrm{CH}_{3} \mathrm{CN}$ was added and evaporated ($2 \times$), and the white solid was dried to give $18(35.8 \mathrm{mg}, 96 \%)$: mp $170-172{ }^{\circ} \mathrm{C}$. A sample was recrystallized ($\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$) to give 18; mp 171.5-173 ${ }^{\circ} \mathrm{C}$.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-methoxypurine (19). A sample of 14 ($51.8 \mathrm{mg}, 0.17 \mathrm{mmol}$) was applied to a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$resin $(1 \times 2 \mathrm{~cm}$, presoaked with MeOH$)$ and allowed to stand, and the product was eluted with MeOH . Fractions were combined and evaporated to give a colorless glass which was "diffusion crystallized" $\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$ and dried to give $1^{9^{30}}(38.9 \mathrm{mg})$ as its hemihydrate. Mother liquors were evaporated, heated/sonicated with $\mathrm{Et}_{2} \mathrm{O}$, evaporated, and dried to give a white solid (6.2 mg ; total yield 45.1 $\mathrm{mg}, 96 \%): \mathrm{UV}(\mathrm{MeOH})$ max $248 \mathrm{~nm}(\epsilon 11300), \min 220 \mathrm{~nm}(\epsilon 2300)$; MS $m / z 266\left(6, \mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 0.5\left(\mathrm{H}_{2} \mathrm{O}\right)(275.3)$: C, 48.00 ; H, 5.49 ; N, 20.35. Found: C, 48.06; H, 5.57; N, 20.14.

7-(β-d-Ribofuranosyl)-4-(1,2,4-triazol-4-yl)pyrrolo [2,3-d]pyrimidine (21). A suspension of tubercidin ($\mathbf{2 0} ; 285 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1 ($307 \mathrm{mg}, 2.2 \mathrm{mmol}$) in pyridine (1.6 mL) was heated with $\mathrm{TMSCl}(0.27$ $\mathrm{mL}, 2.1 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$ for 24 h . The cooled mixture was treated with $\mathrm{TMSCl}(0.3 \mathrm{~mL})$, stirred for 15 min , and evaporated. The residue was dissolved in ice-cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the solution was washed $\left\{\right.$ with brine $(11 \mathrm{~mL})+$ saturated $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ and [brine (11 $\left.\left.\mathrm{mL})+\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{M}, 3 \mathrm{~mL})\right](2 \times)\right\}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, $\mathrm{MeOH}(5 \mathrm{~mL})$ was added, and the solution was stirred overnight. Volatiles were evaporated, the residue was dissolved in $\mathrm{MeOH}(7 \mathrm{~mL})$, and the solution was stirred for 2 h and evaporated. The residue was dried, suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(93: 7,2 \mathrm{~mL}$), filtered, and dried to give 21 ($322 \mathrm{mg}, 95 \%$): $\mathrm{mp} 206.5-208^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \max 227,299 \mathrm{~nm}(\epsilon 25500,6400)$, $\min 248 \mathrm{~nm}(\epsilon 1200)$;

[^8]MS m/z $319\left(5, \mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{4}$ (318.3): C, 49.06; H, 4.43; N, 26.40. Found: C, 49.17; H, 4.27; N, 26.63.
4-(Dimethylamino)-7-(β-d-ribofuranosyl)pyrrolo[2,3- d]pyrimidine (22). A solution of $21(27 \mathrm{mg}, 0.085 \mathrm{mmol})$ in pyridine (1 mL) was stirred with $40 \% \mathrm{HNMe}_{2} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 3 days at ambient temperature. Volatiles were evaporated, and the residue was chromatographed [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right): \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1), \mathrm{MeOH}$]. The eluate was evaporated, $\mathrm{CH}_{3} \mathrm{CN}$ was added, heated, and evaporated $(2 x)$, and the white solid was dried to give 22 ($24 \mathrm{mg}, 96 \%$): mp $\sim 159-160^{\circ} \mathrm{C}$, softening, $190-193{ }^{\circ} \mathrm{C}$ (lit..$^{28} \mathrm{mp}$ 192-195 ${ }^{\circ} \mathrm{C}$); UV $(\mathrm{MeOH}) \max 283 \mathrm{~nm}(\epsilon 15000) \min 246 \mathrm{~nm}(\epsilon 2500) ;$ MS $m / z 294$ (22, M^{+}). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ (294.3): $\mathrm{C}, 53.05 ; \mathrm{H}, 6.16$; N, 19.04. Found: C, 53.29; H, 6.14; N, 18.83 .
4-Methoxy-7-(β-d-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (23). A suspension of $21(24.9 \mathrm{mg}, 0.078 \mathrm{mmol})$ in $\mathrm{MeOH}(\sim 0.25 \mathrm{~mL})$ was stirred with $\mathrm{NaOMe} / \mathrm{MeOH}(1 \mathrm{M}, 0.5 \mathrm{~mL})$ for 1 h . Volatiles were evaporated, and the residue was chromatographed [Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)$: $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1,1 \mathrm{~mL})$, $\left.\mathrm{MeOH}(11 \mathrm{~mL})\right]$. The eluate was evaporated, $\mathrm{CH}_{3} \mathrm{CN}$ was added and evaporated ($3 \times$), and the white solid was dried and recrystallized (acetone) to give 23 (19.2 mg , 87%): mp 156.5-157.5 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{18} \mathrm{mp} 158-160^{\circ} \mathrm{C}$); UV max 262 nm ($\epsilon 7500$) , $\min 235 \mathrm{~nm}(\epsilon 2700)$; MS $m / z 281$ (11, M^{+}). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ (281.3): C, 51.24; H, 5.38; N, 14.94. Found: C, 51.10; H, 5.43; N, 14.78.
3-($\boldsymbol{\beta}$-D-Ribofuranosyl)-7-(1,2,4-triazol-4-yl)pyrazolo[4,3-d]pyrimidine (25). A suspension of formycin ($24 ; 148 \mathrm{mg}, 0.55 \mathrm{mmol}$) and 1 $(246 \mathrm{mg}, 1.7 \mathrm{mmol})$ in toluene $(25 \mathrm{~mL})$ was heated with TMSCl (0.22 $\mathrm{mL}, 1.7 \mathrm{mmol}$) at $70^{\circ} \mathrm{C}$ for 15 h . Volatiles were evaporated, and the residue was partitioned with cold solvents ($5^{\circ} \mathrm{C}$) $\left[\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}) / \mathrm{CH}_{2^{-}}\right.$ $\left.\mathrm{Cl}_{2}(90 \mathrm{~mL})\right]$. The organic phase was filtered through a layer of $\mathrm{Na}_{2}{ }^{-}$
SO_{4}, evaporated, and stirred with $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})+\mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{~mL})+$ 5% HOAc ("two drops") for 4 days. Volatiles were evaporated, and the residue was suspended in $\mathrm{CH}_{3} \mathrm{CN}$ and filtered. The solid was dried to give 25 ($135 \mathrm{mg}, 76 \%$): $\mathrm{mp} 202-205^{\circ} \mathrm{C}$ (coloration); UV (MeOH) $\max 265,273,323 \mathrm{~nm}(\epsilon 3300,3100,6500), \min 256,271,280 \mathrm{~nm}(\epsilon$ 3000, 3100, 2700); MS $m / z 319\left(2, \mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{4}$ (319.3): C, 45.14; H, 4.10; N, 30.71. Found: C, 45.00; H, 4.26; N, 30.55.

7-(Dimethylamino)-3-($\boldsymbol{\beta}$-d-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (26). A solution of 25 ($9.6 \mathrm{mg}, 0.03 \mathrm{mmol}$) and $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}(11$ $\mathrm{mg}, 0.13 \mathrm{mmol})$ in pyridine (0.5 mL) was heated at $57^{\circ} \mathrm{C}$ for 22 h . Volatile materials were evaporated and the residue was applied to a column of Dowex $1 \times 2\left(\mathrm{OH}^{-}\right)(0.5 \times 2 \mathrm{~cm})$ at $5{ }^{\circ} \mathrm{C}$. The column was washed ($\mathrm{H}_{2} \mathrm{O}$), and product was eluted ($0.1 \mathrm{~N} \mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O}$). The eluate was evaporated, and the resulting glass was heated in $\mathrm{CH}_{3} \mathrm{CN}$ and evaporated $(2 x)$. The solid glass was dried and then heated in $\mathrm{CH}_{3} \mathrm{CN}$, evaporated to give a powder, and dried to give 26^{31} (quantitative): $\mathrm{mp} \sim 181-184{ }^{\circ} \mathrm{C}$ (variable); UV (MeOH) $\max 242,305 \mathrm{~nm}(\epsilon$ $4300,14500), \min 234,260 \mathrm{~nm}(\epsilon 4100,3400)$, shoulders 312,325 $\mathrm{nm}(\epsilon 13600,7100)$, UV $\left(0.1 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}\right) \max 307,317 \mathrm{~nm}\left[\mathrm{lit}{ }^{31}\right.$ UV ($0.1 \mathrm{M} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$) $\left.\max 307,316 \mathrm{~nm}\right]$; MS $m / z 295\left(4, \mathrm{M}^{+}\right)$.

Acknowledgment. We thank the American Cancer Society (Grant No. DHP-34) and Brigham Young University Development Funds for generous support and Mrs. Hazel Dunsmore for assistance with the manuscript.

JA9503490

(31) Watanabe, S.; Matsuhashi, G.; Fukatsu, S.; Koyama, G.; Maeda, K.; Umezawa, H. J. Antibiot. Ser. A 1966, 19, 93-96.

[^0]: ${ }^{+}$Present address: Division of Organic Chemistry, Burroughs Wellcome Co., 3030 Comwallis Road, Research Triangle Park, NC 27709.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 15, 1995.
 (1) Part 85: Samano, V.; Miles, R. W.; Robins, M. J. J. Am. Chem. Soc. 1994, 116, 9331-9332.
 (2) For recent comprehensive reviews, see: (a) Ueda, T. In Chemistry of Nucleosides and Nucleotides; Townsend, L. B., Ed.; Plenum Press: New York, 1988; Vol. 1, pp l-112. (b) Srivastava, P. C.; Robins, R. K.; Meyer, R. B., Jr. In Chemistry of Nucleosides and Nucleotides; Townsend, L. B., Ed.; Plenum Press: New York, 1988; Vol. 1, pp 113-281.
 (3) From 4-oxo-pyrimidines via (i) 4-(1,2,4-triazol-1-yl): (a) Divakar, K. J.; Reese, C. B. J. Chem. Soc., Perkin Trans 1 1982, 1171-1176. (b) Sung, W. L. J. Chem. Soc., Chem. Commun. 1981, 1089. (ii) 4-thio: (c) Fox, J. J.; Van Praag, D.; Wempen, I.; Doerr, I. L.; Cheong, L.; Knoll, J. E.; Eidinoff, M. L.; Bendich, A.; Brown, G. B. J. Am. Chem. Soc. 1959, 81, 178-187. (d) Hamamura, E. H.; Sato, K.; Moffatt, J. G. J. Med. Chem. 1972, 15, 1061-1065. (e) Brokes, J.; Beranek, J. Collect. Czech. Chem. Commun. 1974, 39, 3100-3108. (iii) 4-chloro: (f) Zemlicka, J.; Sorm, F. Collect. Czech. Chem. Commun. 1965, 30, 2052-2067. (g) Kaneko, M.; Shimizu, B. Chem. Pharm. Bull. 1972, 20, 1050-1053. (iv) 4-silyloxy: (h) Vorbruggen, H.; Krolikiewicz, K.; Niedballa, U. Liebigs Ann. Chem. 1975, 988-1002. (v) 4-alkoxy: (i) Robins, M. J.; Naik, S. R. Biochemistry 1971, 10, 3591-3597. (vi) 4-pyridinium: (j) Wenska, G.; Skalski, B.; Gdaniec, Z. Can. J. Chem. 1992, 70, 856-862.

[^1]: (4) From 6-oxopurines via (i) 6-chloro: (a) Gerster, J. F.; Jones, J. W.; Robins, R. K. J. Org. Chem. 1963, 28, 945-948. (b) Ikehara, M.; Uno, H. Chem. Pharm. Bull. 1965, 13, 221-223. (c) Zemlicka, J.; Sorm, F. Collect. Czech. Chem. Commun. 1965, 30, 1880-1889. (ii) (6-silyloxy): (d) Vorbrüggen, H.; Krolikiewicz, K. Liebigs Ann. Chem. 1976, 745-761. (e) Robins, M. J.; Bernier, S. E.; Hansske, F. Can. J. Chem. 1981, 59, 33603364. (iii) 6-pyridinium: (f) Adamiak, R. W.; Biala, E.; Skalski, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 1054-1055. (g) Fathi, R.; Goswami, B.; Kung, P.-P.; Gaffney, B. L.; Jones, R. A. Tetrahedron Lett. 1990, 31, 319322. (iv) 6-thio: (h) Fox, J. J.; Wempen, I.; Hampton, A.; Doerr, I. L. J. Am. Chem. Soc. 1958, 80, 1669-1675. (v) 6-(pentafluorophenoxy): (i) Gao, H.; Fathi, R.; Gaffney, B. L.; Goswami, B.; Kung, P.-P.; Rhee, Y.; Jin, R.; Jones, R. A. J. Org. Chem. 1992, 57, 6954-6959.
 (5) From 4-aminopyrimidines via (i) 4-thio: (a) Ueda, T.; Miura, K.; Imazawa, M.; Odajima, K. Chem. Pharm. Bull. 1974, 22, 2377-2382. (ii) 4-seleno: (c) Shiue, C.-Y.; Chu, S.-H. J. Org. Chem. 1975, 40, 2971 2974.
 (6) From 6-aminopurines via (i) 6-thio: (a) Ueda, T.; Imazawa, M.; Miura, K.; Iwata, R.; Odajima, K. Tetrahedron Lett. 1971, 2507-2510. (b) Miura, K.; Ueda, T. Chem. Pharm. Bull. 1975, 23, 2064-2069. (ii) 6-diazonium: (c) Nair, V.; Richardson, S. G. J. Org. Chem. 1980, 45, 39693974. (iii) 6-seleno: (d) Shiue, C.-Y.; Chu, S.-H. J. Heterocycl. Chem. 1975, 12, 493-500. (e) Shiue, C.-Y.; Chu, S.-H. J. Chem. Soc., Chem. Commun. 1975, 319-320.
 (7) (a) Robins, M. J.; Basom, G. L. Can. J. Chem. 1973, 51, 31613169. (b) Robins, M. J.; Uznanski, B. Can. J. Chem. 1981, 59, 26012607.

[^2]: (15) Protection of sugar hydroxyls with electron-withdrawing groups stabilizes the glycosidic bond of nucleosides. ${ }^{\text {7a }}$ The electron-withdrawing effect of silyl ethers (Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; Part I, pp 809-827) is a possible explanation for the present observation.
 (16) Suhadolnik, R. J. Nucleosides as Biological Probes; WileyInterscience: New York, 1979. (a) pp 159-166. (b) pp 169-181.
 (17) (a) Ramasamy, K.; Imamura, N.; Robins, R. K.; Revankar, G. R. Tetrahedron Lett. 1987, 28, 5107-5110. (b) Ramasamy, K.; Imamura, N.; Robins, R. K.; Revankar, G. R. J. Heterocycl. Chem. 1988, 25, 18931898. (c) Rosemeyer, H.; Seela, F. Helv. Chim. Acta 1988, 71, 1573-1585.
 (18) Gerster, J. F.; Carpenter, B.; Robins, R. K.; Townsend, L. B. J. Med. Chem. 1967, 10, 326-331.

[^3]: (19) (a) Long, R. A.; Lewis, A. F.; Robins, R. K.; Townsend, L. B. J. Chem. Soc C 1971, 2443-2446. (b) Milne, G. H.; Townsend, L. B. J. Chem. Soc., Perkin Trans. 1, 1972, 2677-2681.

[^4]: ${ }^{a}$ Chemical shifts (δ) in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ at 200 MHz unless noted otherwise. ${ }^{b}$ "Apparent" first-order coupling constants (Hz , in parentheses). ${ }^{c}$ Doublet unless noted otherwise. ${ }^{d}$ Doublet of doublets of doublets unless noted otherwise. ${ }^{e}$ Multiplet unless noted otherwise. ${ }^{j}$ Upfield resonance assigned to $\mathrm{H}^{\prime \prime}$ (pro-R). ${ }^{8}$ Singlet unless noted otherwise. ${ }^{h}$ Triplet unless noted otherwise. ${ }^{i}$ Doublet of doublets unless noted otherwise. ${ }^{i}$ After $\mathrm{D}_{2} \mathrm{O}$ exchange. ${ }^{k}\left(J_{2^{\prime \prime}-3^{\prime}}\right) \cdot{ }^{I}\left(J_{1^{\prime}} 2^{\prime \prime}\right) .{ }^{m}\left(J_{2^{\prime}-2^{\prime}}\right)$. ${ }^{n}$ Broad singlet. ${ }^{o}$ Unresolved.

[^5]: (21) Baker, B. R.; Schaub, R. E.; Joseph, J. P. J. Org. Chem. 1954, 19,

[^6]: (24) Robins, R. K.; Lin, H. H. J. Am. Chem. Soc. 1957, 79, 490-494.

[^7]: (25) Kissman, H. M.; Pidacks, C.; Baker, B. R. J. Am. Chem. Soc. 1955, 77, 18-24.
 (26) Ramalingam, K.; Woodard, R. W. Carbohydrate Res. 1985, 142, 123-126.
 (27) Johnson, J. A., Jr.; Thomas, H. J.; Schaeffer, H. J. J. Am. Chem. Soc. 1958, 80, 699-702.

[^8]: (28) Lin, T.-S.; Cheng, J.-C.; Ishiguro, K.; Sartorelli, A. C. J. Med. Chem. 1985, 28, 1481-1485.
 (29) Iwamoto, R. H.; Acton, E. M.; Goodman, L. J. Org. Chem. 1962, 27, 3949-3953.
 (30) Holguin-Hueso, J.; Cardinaud, R. J. Chromatogr. 1972, 66, 388392.

